High-frequency δ Scuti stars with TESS

Tim Bedding, Simon Murphy, Daniel Hey, Daniel Huber, Tanda Li, Gang Li, Yaguang Li, Barry Smalley, Dennis Stello, Bill Chaplin, Isabel Colman, Jim Fuller, Eric Gaidos, Daniel Harbeck, J. J. Hermes, Andrew Mann, Daniel Reese, Sanjay Sekaran, Tim White, Jie Yu, Vichi Antoci, Tim Brown, Andrew Howard, Howard Isaacson, Jon Jenkins, Hans Kjeldsen, Curtis McCully, Markus Rabus, George Ricker & Roland Vanderspek

http://xkcd.com/26/
δ Scuti pulsators are common among A-type stars
δ Scuti stars are very good clocks!

Murphy et al. (2014, 2016a, 2016b, 2018)
A PLANET IN AN 840 DAY ORBIT AROUND A **KEPLER** MAIN-SEQUENCE A STAR FOUND FROM PHASE MODULATION OF ITS PULSATIONS

Simon J. Murphy¹,², **Timothy R. Bedding**¹,², and **Hiromoto Shibahashi**³

A $12 M_{\text{Jup}}$ planet orbiting in or near the habitable zone of a main-sequence
Aims of asteroseismology:

1. fundamental properties of stars (masses, radii, ages)
2. probe stellar interiors in exquisite detail (convective overshoot, nuclear burning, internal rotation, magnetic fields)
solar-like oscillations: 16 Cyg A (*Kepler*)

labels are ℓ values (angular degree)

Garcia & Ballot (2019)
$\ell = 0$ (radial modes)

\[a) \ell = 1 \quad d) \ell = 2\]
p-mode oscillations are standing sound waves

$n = 1$

$n = 2$

$n = 3$

n is the radial order of the overtone

$n = 20$
astroseismology needs mode identification for comparison with theoretical models

16 Cyg A: Metcalfe et al. (2016)

Garcia & Ballot (2019)
Why is mode identification so difficult in δ Scuti stars?

- not all modes excited
- rotation (+ ellipsoidal shape) spoil regular patterns
- (so do avoided crossings of mixed modes)
A typical Sun-like star

White et al. (2012)

\[\ell = 2 \]
\[\ell = 0 \]
\[\ell = 1 \]

\[n = 16 \]
\[n = 17 \]
\[n = 18 \]
\[n = 19 \]
\[n = 20 \]

KIC 6933899 ("Fred")

\textit{Échelle} diagram using \textit{lightkurve}

\[\ell = 1 \]
\[\ell = 0 \]
\[\ell = 1 \]
TESS short-cadence data (Sector 5)
High-frequency A-type pulsators discovered using SuperWASP

about 1/3 observed with TESS 2-minute cadence
TESS 2-minute data

HD 28548

TESS 2-minute data

HD 44726
KIC 6933899 ("Fred")
Sun-like star

$\ell = 2$
$\ell = 0$
$\ell = 1$

$\ell = 2$
$\ell = 0$
$\ell = 1$

MESA model mass = 1.56

we can assign n and l to the modes 😊

HD 28548
δ Scuti star

$n = 22$
$n = 21$
$n = 20$
$n = 19$
$n = 18$
$n = 17$
$n = 16$
$n = 15$
$n = 14$
$n = 13$

$n = 10$
$n = 9$
$n = 8$
$n = 7$
$n = 6$
$n = 5$
$n = 4$
$n = 3$
$n = 2$
$n = 1$
radial fundamental ($\ell=0$, $n=1$)
weak high-frequency peaks excited by turbulent pressure? (Antoci et al 2014)

Nyquist frequency (30 minutes)
Finding more stars

- downloaded all TESS short-cadence data (Sectors 1 to 9; PDC-MAP)
- computed amplitude spectrum
- considered distribution of peak heights above 30 c/d; measure skewness (3rd moment; Murphy et al 2019)
- inspected échelle diagrams
- also looked at Kepler δ Scutis with short-cadence data
- total 60 stars so far
Finding Δv

<table>
<thead>
<tr>
<th>Frequency (d$^{-1}$)</th>
<th>Frequency mod Δv (d$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

OH, HEY, YOU ORGANIZED OUR PHOTO ARCHIVE!

YEAH, I TRAINED A NEURAL NET TO SORT THE UNLABELED PHOTOS INTO CATEGORIES.

WHOA! NICE WORK!

ENGINEERING TIP: WHEN YOU DO A TASK BY HAND, YOU CAN TECHNICALLY SAY YOU TRAINED A NEURAL NET TO DO IT.
Finding Δv

- **Finding Δv**

- **Diagram**

- **Comic**

 "OH, HEY, YOU ORGANIZED OUR PHOTO ARCHIVE!"

 "YEAH, I TRAINED A NEURAL NET TO SORT THE UNLABELED PHOTOS INTO CATEGORIES."

 "WHOA! NICE WORK!"

 Engineering Tip:

 "When you do a task by hand, you can technically say you trained a neural net to do it."
OH, HEY, YOU ORGANIZED OUR PHOTO ARCHIVE!

Yeah, I trained a neural net to sort the unlabeled photos into categories.

Whoa! Nice work!

Engineering tip: When you do a task by hand, you can technically say you trained a neural net to do it.
Δν varies with frequency
TESS short-cadence data (Sector 5)
HR diagram (Gaia DR2) – these are young stars
some more complex patterns:
some more complex patterns:
some more complex patterns:

rotation
Young associations

• used *Gaia* DR2 space motions
• cross-matched with known moving groups, clusters and stellar streams:
 – 5 in associations: Octans (3), Carina
 – 1 in moving group: β Pic
 – 1 in stellar stream: Pisces-Eridanae (HD 31901)
Pisces-Eridanae stellar stream
What next?

- can finally do detailed asteroseismology of (some) δ Scuti stars
- compare with models: ages and internal rotation
- TESS is observing many at 2-minute cadence - and even more when FFI long cadence is shortened to 10 minutes
Asteroseismology of δ Scuti pulsators is difficult!

Breger et al. (2005)

Murphy et al. (2014)
Some δ Scutis are simple

- both radial ($\ell=0$)
- fundamental ($n=1$) & 1st overtone ($n=2$)

Petersen Diagram:
OGLE data for the LMC
(Poleski et al. 2010)

Antoci et al. (2019)
TESS - SX Phe
V435 Car

V349 Pup & V435 Car

\[\ell = 0 \quad \ell = 1 \]
These are *not* solar-like oscillations:
- much higher amplitude
- much lower n (do not obey the same ν_{max} scaling relation)
Δν varies with frequency

Pairwise differences (μHz)
\[\Delta v \propto 0.85 \rho^{0.5} \]

\[\Delta v \propto \rho^{0.5} \]
Rotation

• obtained high-resolution spectra of 14 stars with Keck/HIRES and LCO/NRES
• plus published $v \sin i$ for 5 stars
• more than half $v \sin i$ values below 70 km/s
• implies some (but not all) are seen close to pole-on
• also lots are λ Boo stars