The New EXor Outburst of ESO-Hα 99 observed by Gaia ATLAS and TESS

Klaus W. Hodapp, Bo Reipurth, Bertil Pettersson, John Tonry, Larry Denneau, Patrick J. Vallely, Benjamin J. Shappee, James D. Armstrong, Michael S. Connelley, C. S. Kochanek, Michael Fausnaugh, Rolf Chini, Martin Haas, and Catalina Sobrino Figaredo

• Under what conditions do stars accumulate most of their mass?
• Luminosity problem, HR diagram scatter?
• What is the thermal history of proto-planetary disks?
FUor light curves (from Herbig 1977) EXor light curves (from Kospal et al. 2011)
FUor: An optically thick inner accretion disk becoming luminous as a result of an increase in the accretion flow: Absorption Spectrum
EXor: Increase in continuum component in a still optical thin environment: Emission Spectrum
The more substantial FUor outbursts show an absorption line spectrum (from Connelley & Reipurth 2018)

The smaller EXor outbursts are characterized by an emission line spectrum (from Aspin et al. 2010)
A “New Exor” (Lorenzetti) or “MNor” (Contreras Pena)
The T Tauri Star ESO Hα 99 in the Sandquist 1 Molecular Cloud
Gaia and ATLAS over the past 4 yrs
Prior outburst
Minimum before current outburst

Current Outburst:
Gaia18dvz
Intermediate minima

TESS Data:
Final intermediate minimum before outburst maximum
Fluctuations with 10-20% amplitude and time constants 1 - 10 days
No periodicity

If the decline in brightness does indeed continue, the light curve is typical of a fairly long EXor outburst.
Near-Infrared Colors

The locus in the J-H vs. H-K color-color diagram, and the path between pre-outburst and outburst colors characterize ESO Hα 99 as among of the most reddened EXors known.

Comparison objects are from Lorenzetti et al. 2011
Spectrum of ESO Hα 99

Combined optical Faulkes Telescope and near-infrared IRTF/SPEX spectrum

It is dominated by emission lines, most notably the hydrogen lines, and CaII and CO band heads.

This characterizes ESO Hα 99 as an EXor.
At maximum brightness, emission lines are suppressed!
Conclusions

ESO Ha 99
- is a deeply embedded flat spectrum YSO
- is undergoing a major outburst at the upper limit of classical EXor outbursts.
- Its light curve shows details on timescales from months down to one day.
- Its spectrum changed from a emission line rich T Tauri spectrum during quiescence
to a spectrum with more continuum and quenched forbidden lines.
FU Orionis Outbursts: Long Outburst Duration

Subaru Hα image by B. Reipurth showing nebulosity and association with molecular cloud

Fuor light curves and SEDs From Herbig 1977 and Hartmann & Kenyon 1996

FU Orionis has a disk, but is not embedded in a large envelope of cold molecular material. Z CMa, in contrast, is embedded in more colder molecular material.
from Aspin et al. 2010
Conclusions

ESO Ha 99

• is a deeply embedded flat spectrum YSO
• s undergoing a major outburst at the upper limit of classical EXor outbursts.
• Its light curve shows details on timescales from months down to one day.
• Its spectrum changed from a emission line rich T Tauri spectrum during quiescence
• to a spectrum with more continuum and quenched forbidden lines.