First TESS results on Cepheid and RR Lyrae stars: towards asteroseismic inferences

(Kokosy Observatory, MTA GSK, Budapest, ¹Dept. of Astronomy, Eötvös University, Budapest)

Beta Doradus - a 3-mag Cepheid in the CVZ

This is one of the brightest classical Cepheids in the sky. Large pulsation amplitude modulates the length of the saturation column, so we had to do custom photometry with light-curve (red, SAP aperture, black: ours).

Contamination, like the star in the blue column in S1, is minor, and as the saturation column rotates on the sky with the sectors, affecting sources can be measured in other sectors.

Echelle diagrams for RR Lyraes

Classical echelle plots are based on the (near-)repetition of patterns with the large separation. We can construct something similar for RR Lyraes. Modes are coupled to the main radial mode, creating repeating combination frequencies \(f + n \omega_0 \). We first remove the main mode and the modulation side peaks if necessary.

Patterns and distributions show surprising diversity: similar ridges but different peak amplitude frequencies complicate mode identification.

| These are RRab home are empty. |
| Some have weird patterns, with different coupling strengths (shifted frequency) |
| Othert have thin and simple ridges but the strongest peak is at higher or lower frequencies, outside the \(\xi = \xi_0 \) range. |
| Why does CS Phe have skewed ridges? |
| Most overtones (RO) stars have similar additional modes in them at \(~0.6-0.65\), but there are exceptions where a different mode shows up. |

XZ Cet - a prototype anomalous Cepheid that intrigues

Anomalous Cepheids/ACs lie between RR Lyraes and Cepheids in the period-luminosity relation. XZ Cet was the second to be discovered in the Milky Way. They are the massive siblings of RR Lyraes but it is still debated if they evolve as very metal-poor single stars or through binary interactions. TESS provided us the first really detailed look:

XZ Cet is not really a single-mode first overtone AC star. It has a strong secondary mode exactly where it appears in overtone RR Lyrae and classical Cepheid stars, at the 0.80-0.85 period ratio range.

These secondary modes seem ubiquitous, yet not actually omnipresent across three classes of first-overtone pulsating stars. And we do not know yet how and why they are excited.

Asteroseismic differences between field and Bulge stars

Additional modes in RR Lyrae stars have been detected almost exclusively via space-based photometry or by the OGLE survey. We compared the TESS and OGLE Bulge collections, and found some striking differences between the distributions.

Physical differences between RR Lyrae population apparently manifest as differences in asteroseismic signatures as well, affecting the excitation and/or frequencies of additional modes. Now investigate the lack of medium-period RRab stars with extra modes in the Bulge.

References

K2-23 see also RR Lyrae, Molnar et al., 2015, MNARS, 432, 4883
CoRoT RR Lyrae, Szabó et al., 2004, A&A, 201, 400
XZ Cet, Szabados et al., 2007, A&A, 468, 313
O1G RRab modes, Szabados et al., 2013, MNARS, 447, 1173
Cepheid extra modes: Sosnowy & Beílésse, 2014, MNARS, 438, 3561
Sengő & Anderson, 2018, MNARS, 478, 1425

Acknowledgements

The research leading to these results has been supported by the Hungarian NKFIH grants K-111709 and PD012303, and by the Leendheli LP0123-17, LP0134-17 and LP0135-17 grants of the Hungarian Academy of Sciences. LM was supported by the Premium Postdoctoral Research Program, E.P.F. by the Janos Bolyai Research Scholarship of the Hungarian Academy of Sciences. Funding for the TESS mission is provided by the NASA Explorer Program. Funding for the Kepler and K2 missions are provided by the NASA Science Mission Directorate. A.P. acknowledges the MIT Kavli Center and the Kavli Foundation for their hospitality during the stays at MIT and the NASA contact number NNG14HI04C.

lightcurve. Lighthouse Collaboration, 2018, Astrophysics Source Code Library, recorded 1812.018