

TESS observations of the WASP-121 b phase curve

Tansu Daylan¹, Maximilian N. Günther¹, Thomas Mikal-Evans¹, David Sing³, Ian Wong², Avi Shporer¹, Ian Crossfield^{1,2}, Prajwal Niraula³, Julien de Wit³, Tara Fetherolf⁴, Stephen R. Kane⁴

and the TESS team

¹Department of Physics, and Kavli Institute for Astrophysics and Space Research, MIT, Cambridge, MA, USA ²Department of Earth, Atmospheric, and Planetary Sciences, MIT, Cambridge, MA, USA

³Department of Earth and Planetary Sciences and Department of Physics & Astronomy, JHU, Baltimore, MD, USA ⁴Department of Physics and Astronomy, University of California, Riverside, CA, USA

tdaylan@mit.edu

Introduction

We study the first red-optical phase curve of the ultra-hot Jupiter WASP-121b (Delrez+2016) as observed by the Transiting Exoplanet Survey Satellite (TESS) during its Sector 7 observations. Given its short orbital period of 1.275 days, inflated state, and bright, F-type host star, WASP-121b has a high potential for detailed atmospheric characterization.

Modeling the TESS data	
PDC (top) and SAP (bottom) light curves of WASP-121:	We model WASP-121

We model WASP-121b's dayside atmosphere using ATMO (Amundsen+2014) via one-dimensional radiative transfer, exploiting all available data (Delrez+2016, Evans+2017, Kovacs&Kovacs2019, Garhart+2019, Evans2019):

Characterization of the phase curve using allesfitter (Günther & Daylan 2019) including the primary and secondary transits, ellipsoidal variations, thermal and reflected components:

Having a bluer passband than other datasets, TESS data are more sensitive to lower pressures in the atmosphere. The atmospheric retrieval confirms the previously-suspected temperature-pressure inversion, moves the inversion to lower pressures and the pre-inversion temperature up by ~ 150 K:

We measure a dayside and nightside emission of 530 ± 50 ppm and 90 ± 40 ppm, respectively, and find no significant phase offset between the secondary and the atmospheric modulation.

Conclusion

The retrieval tied to the TESS data confirms the contribution of H⁻ to the optical opacity of the atmosphere at low pressures and infers a high (i.e., 10^{-24} cm²/molecule) level of TiO and VO, which may be causing the temperature inversion. Our findings are consistent with a low albedo and heat recirculation efficiency. Future HST and JWST observations of WASP-121b will benefit from this red-optical light curve measured by TESS, in determining the characteristics of WASP-121b' stratosphere.